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X is the coordinate normal to the wave front; p, is the
density of the medium; p is the density of the particle;
C, is the speed of sound in the medium; C is the speed
of sound in the particle; X is the particle velocity; X is
the particle acceleration; t is the time; and 7 is the
liquid viscosity.
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An equation is presented for the growth of a stationary spherical gas
bubble in a finite spherical liquid volume, for which the familiar
Rayleigh equation is the zero-order approximation. The results of
computer solutions of the derived equation and the Rayleigh equation
are compared.

In {1] Rayleigh derived an equation for the growth
of a stationary spherical gas bubble in an infinite
volume of liquid. Thus, from the equations of hydro-
dynamics and continuity in a spherical coordinate sys-
tem
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with boundary condition VlrzR = R(t), where, as usual,
x =dx/dt, one obtains

RR*+-2RR*  2R'R® 1 P

r2 & == 0 a_r (1)

Then Rayleigh, integrating (1) from r =R tor =,
obtained his familiar equation
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Equation (2) has been used by many authors (for ex-
ample, {2—5]) in connection with problems involving
the growth of a bubble in a liquid. However, the finite-
ness of the liquid volume has not been taken into ac-
count.

To estimate the effect of this factor on the bubble
growth and to compare with the Rayleigh solution, we
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Deviation of the solutions for R~ in Egs. (4)
with @ = var from the solution Ry of the Ray-

leigh equation (for Q = «). Plotted along the
axis of abscissas, to a logarithmic scale, are
the time t (sec) and the corresponding radius
R (- 103, cm); along the ordinate axis, to a
variable scale, we have the deviation in % of
Reo from RQ for the corresponding t. 6=

= (RQ — Ra) - 100/RQ.

formulate the simple following problem: at time t = 0
a spherical gas bubble of radius Ry is formed and be-
gins to grow at the center of a spherical volume Q of
liquid with infinite permeability at the boundary, the
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growth of the bubble being accompanied by an increase

in the external radius of the liquid sphere. For sim-

plicity, the pressure at the external boundary of the

liguid is assumed constant and equal to zero: Pe = 0.
Then, integrating (1) from r =R to r = (3Q/4r +

+ R3)‘ 3 we have
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Thus, the Rayleigh equation is the zero-order approxi-
mation (Q = «) of Eq. (3).

Retaining terms with Q to the power —1/3 in the
Taylor expansions of the denominators in Eq. (3), we
obtain the equation for the first approximation
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This equation was solved on a M-20 computer for a
simple law of variation in PR '

R 3
pR:PO(?ﬂ).

We assumed p =1 g/cms, Ry = 1078 cm, and Py =2-
+10* N/m?% A solution was obtained for @ = = (Ray-
leigh equation (2)) and for Q from 10*to 0.5 cm?® (for
Eq. (4)).*

* A calculation was also performed with the given
values of p, Ry, Py and Pw = 0 for the second-order
approximation, retaining terms with Q to the power
~4/3 in the Taylor expansion of the denominators. The
results were in complete agreement with the calcula-
tions for the first-order approximation, which con-
firms the possibility of stopping at the first approxi-
mation in this particular example.
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The results of the calculations are presented in the
figure; from these one can estimate the error given
by the Rayleigh solution as compared with the solution
of Eq. (4), which is more accurate for a finite volume
of liguid.

The form of the curves should remain qualitatively
the same for a slowly rising spherical bubble in a
heated liquid {for example, in the initial stage of bubble
growth during boiling), since the hydrodynamic terms
in the equation of dynamic equilibrium for such a bubble
play a part which is small as compared with the terms
responsible for the surface tension and rate of evapora-
tion of liquid inside the bubble {5]. Hence criteria can
be derived for the pogsibility of negiecting the effect
of the walls and other bubbles on the growth of a given
bubble in boiling studies and also to determine the
minimum vessel dimensions necessary for the experi~
mental investigation of bubble growth in a liquid.

NOTATION

R is the radius of a gas bubble; PR and P« are the
pressure at the inner and outer boundaries of the
liquid, respectively; Q is the volume of liquid, em?;
P, is the initial pressure in the gas bubble, N/mz;
v{r, t) is the velocity field in liquid; p is the density
of the liquid.
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